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REFLECTION OF A DAM-BREAK WAVE AT A VERTICAL WALL.

NUMERICAL MODELING AND EXPERIMENT

UDC 532.5:519.6V. B. Barakhnin,1 T. V. Krasnoshchekova,2 and I. N. Potapov2

Results of the experimental study and numerical modeling of the reflection of a dam-break wave
at the vertical end wall of a channel are given. A wave forms with distance from a partition
creating the initial level difference of the liquid. It is shown that a numerical calculation based
on the Zheleznyak–Pelinovskii nonlinear dispersion model satisfactorily describes the height of
the splash-up, the amplitude of reflected waves, and the wave velocity in front of the wall for
smooth and dam-break waves. It is also shown that, for smooth and weakly breaking (without
significant entrainment of air) incoming waves, the experimental values of the height of the
splash-up at the wall agree well with relevant experimental and calculated data for solitary
waves.

Formulation of the Problem. The problem of the formation of a dam-break wave and its subsequent
reflection at a wall is considered. The system consists of a reservoir with an even bottom and rigid impenetrable
vertical walls. The reservoir is filled with a homogeneous liquid and has a thin impenetrable partition creating
the level difference of the liquid (Fig. 1) at the initial moment. This formulation includes two classical
problems: the problem of the formation of a dam-break wave and the problem of wave reflection at a wall. In
the present work, the processes that occur in a part of the reservoir with the initially lower level of the liquid
were investigated.

Many studies deal with dam-break waves that arise, for example, in breaking a dam. Previously, their
parameters were calculated with the use of the Saint-Venant equations which do not take into account the
dispersion. In this case, breaking waves are modelled by discontinuous solutions. The Saint-Venant equations
do not describe a broad class of problems (smooth undular and solitary waves). At the same time, experiments
[1] have shown that in a certain range of parameters ∆h0 = (h1− h2)/h2 and l0 = l2/h2, the dam-break wave
is accompanied by oscillations behind the smooth front, i.e., it has the form of a smooth undular bore.

It follows from theoretical results [2] that the energy lost by a breaking bore is partially expended on
the formation of oscillations in the form of cnoidal waves. Calculations with the use of models that allow for
the dispersion were performed, in particular, in [3, 4].

For the considered case of the reflections of a dam-break wave, the Saint-Venant equations give quite an
exact value of the splash-up height only for small-amplitude waves. For a particular reservoir, the numerical
modeling of the reflection of a dam-break wave is described in [5]; note that the calculations were performed
with the use of the Zheleznyak–Pelinovskii nonlinear dispersion model and the model of potential fluid motion.
Numerous studies are devoted to the reflection of solitary waves (see, e.g., [6–9]). Below, it is shown that the
calculation results obtained for the reflection of a solitary wave at a vertical wall on the basis of the equations
of potential fluid motion are in good agreement with those obtained for the reflection of a smooth dam-break
wave.
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Fig. 1. Layout of the setup: 1) partition; 2) bottom of the channel; 3) reflecting wall.

Experimental Technique. The experiments were carried out in a closed rectangular Plexiglas chan-
nel of width 6 cm with an even horizontal bottom. The waves were generated by removing a partition creating
the initial level difference ∆h = h1 − h2. In addition to h1 and h2, the important parameter of the problem
is the distance between the partition and the reflecting wall l2. The linear dimensions were normalized by the
value of h2, and the velocities by the value of

√
gh2 (g is the acceleration of gravity).

The experimental technique is similar to that given in [10]. A fine disperse powder was preliminarily
coated on the end wall; a certain portion of this powder was carried away by the incoming wave, producing a
distinct boundary of the splash-up, i.e., the maximum rise of the liquid level, at the wall. The structure and
velocity of the wave were recorded by a wavemeter and video recorded. The resistive wavemeter consisted
of two electrodes of diameter 0.1 mm. The recording equipment included a self-recorder or an analog-to-
digital converter connected to a computer. Video recording was performed by a Panasonic RX2 VHS-C video
camera with a frequency of 25 frames/sec. The low resolution of the video camera (240 lines in the vertical)
was compensated for by recording with large magnification, in which the leading crest of the wave occupied
approximately half of the frame. The camera was moved on a tray in such a way that the first crest of the wave
remained in the frame. To obtain the most contrast image, the sports mode of video recording with an exposure
time of approximately 1/500 sec was used. Then, the image was computer-processed. The measurement error
for the height and velocity of the leading crest, which is caused by smearing of the wavefront image, was 3%.
The partition was removed by hand. The time for which it was removed from the liquid was approximately
0.1 sec; as the pictures of the internal structure show, the perturbations caused by adhesion of the liquid to
the partition either rapidly disappeared for ∆h0 < 0.8 or transformed to a breaking hydraulic jump. After
the partition was removed, a wave with elevation of the level was propagated over the smaller-depth liquid
and a wave with lowering of the level was propagated over the larger-depth liquid. In this work, the wave
with elevation of the level was investigated. During evolution of the dam-break wave the height of the first
crest a0

1 and the propagation velocity of the middle point of the leading edge c0 (hereinafter, the superscript 0
corresponds to dimensionless quantities) were measured. The problem parameters were varied in the following
ranges: 0.5 6 ∆h0 6 1.4, 50 < l2/h2 < 90, and h2 = 3–4 cm.

Numerical Model. The formation of an undular bore is due to dispersion effects; therefore, the
Zheleznyak–Pelinovskii nonlinear dispersion model was used in calculations [11]. In dimensionless variables,
the equations of this model are written in the form

ht + Px = 0, Pt +
(P 2

h
+
h2

2

)
x

= D. (1)

Here D = ((h3/3)(uxt+uuxx− (ux)2))x in the case of a horizontal bottom of the reservoir. Here h is the total
depth of the liquid, u is the velocity of the liquid, and P = hu is the flow rate of the liquid.

Similarly to the technique described in [12], the system of Zheleznyak–Pelinovskii equations was split
in the second-order ordinary differential equation

(h3dx)x − 3hd = (h3(2(ux)2 + hxx))x (2)

relative to the unknown d and a hyperbolic system of the form (1), where D = hd.
The calculations were performed on a mobile adaptive grid. Equation (2) was first solved; then, the

hyperbolic system was approximated with the use of the TVD-scheme described in [13].

270



Fig. 2. Comparison of the experimental and calculated profiles of the dam-
break waves for ∆h0 = 0.8 (curves 1) and 0.6 (curves 2); solid and dashed
curves refer to the calculated and experimental profiles, respectively.

Experimental Results and Analysis. As is known, breaking of nonstationary waves of many types
occurs when a certain critical velocity of the leading-edge particles is reached [14, 15]. This velocity is called
the second critical velocity and it is equal to the limiting velocity of solitary waves c0cr = 1.294 obtained in [16]
by numerical calculations based on the complete equations of potential fluid motion. The experimental results
reported here show that the dam-break waves begin to break precisely at this velocity. If the velocity of the
leading edge of the dam-break wave did not exceed c0cr during its evolution, the wave remained smooth. This
behavior was observed for ∆h0 < 0.8. For 0.8 < ∆h0 < 1.1, both smooth stages and stages with leading-edge
breaking were observed in the evolution of the wave. For ∆h0 > 1.1, breaking of the leading edge occurred up
to the moment of interaction with the wall. It is noteworthy what even the incoming waves with the breaking
leading edge became smooth after reflection and they could break again after a time.

Figure 2 shows experimental (dashed curves) and calculated (solid curves) profiles of the dam-break
waves. The profiles are obtained for l02 = 61.5; note that the pair of profiles with the larger value of elevation
η0 = h0− 1 corresponds to the case ∆h0 = 0.8, and with the smaller value to the case ∆h0 = 0.6. The curves
are arranged in such a way that the peaks of the first undulations have the same abscissa.

It follows from Fig. 2 that the undulations, their height, and the depth of troughs between undulations
almost coincide. A certain difference is observed in the undulation width: the calculated profiles are somewhat
wider than the experimental ones. A similar result was observed earlier in comparing the profile of a solitary
wave (solutions of the Corteweg-de-Vries equation) with experiment in [17], where the solitary-wave profiles
obtained with the use of simple models are compared in detail.

Figure 3 shows the characteristic experimental profiles of the dimensionless splash-up ζ0, i.e., the
maximum level of the liquid at the wall in the process of wave reflection (the boundary dividing the wetted
and nonwetted regions of the wall surface after reflection of the wave). The dimensionless transverse coordinate
on the wall y0

∗ is plotted on the abscissa. Profiles 1 and 2 obtained upon reflection of smooth waves are uniform
in height. Profiles 3 and 4, which correspond to incoming dam-break waves, have strong oscillations. For an
analysis of the profiles, we introduce three characteristic values of ζ0: maximum (ζ0

max), minimum (ζ0
min),

and channel width-averaged (ζ0) values. In our numerical study, the plane problem was considered, i.e.,
the transverse profile of the splash-up was assumed to be horizontal. Therefore, the averaged value of the
experimental profile of the splash-up was compared with the numerical one.

The dependence of the splash-up height on the level difference is given in Fig. 4. The break is clearly
seen on the diagrams. For ∆h0 ≈ 1.05, a significant decrease in the rate of increase in the splash-up height
with increase in ∆h0 is observed. In addition, the difference between ζ0

max and ζ0
min substantially increases.

Visual observations and video recording have shown that, for ∆h0 > 1, the incoming waves become breaking
waves near the wall. Thus, the part of the curve to the left of the break corresponds to the splash-up of
smooth waves and that to the right corresponds to the splash-up of the dam-break waves.
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Fig. 3. Transverse profiles of the splash-up: curves 1 and 2 refer
to smooth waves for ∆h0 = 0.74 (1) and 0.89 (2) and curves 3
and 4 refer to breaking waves for ∆h0 = 1.14 (3) and 1.46 (4).

Fig. 4. Dependence of the average (a) and maximum and minimum (b) heights of the splash-up of the dam-break
wave on the level difference l2/h2 = 71.8 (curves 1) and l2/h2 = 61.5 (curves 2).

Figure 5 shows experimental and calculated dependences of the splash-up height and the amplitude
of the reflected solitary waves on the level difference. The amplitudes of the reflected waves were measured
at the moment at which their interaction with the incoming waves terminated; note that in calculations, the
later moment of time corresponded to the larger values of l02, which caused a certain nonmonotone character
of the dependence of the amplitude of the reflected wave on l02.

The experimental and calculated values of the splash-up height of the reflected waves and their am-
plitudes correlate satisfactorily. For the numerically determined height of the splash-up, one curve is given,
because the curves obtained for the three values of the parameter l2/h2 coincided with an accuracy up to
0.5%. The experimental data differ from the calculation results by no more than 10%. This discrepancy is
the same for all the series of tests with level differences corresponding to the conditions of the formation of
smooth waves. For modes with breaking waves, for ∆h0 > 1, the experimental data are in a better agreement
with calculations, especially in the case l2/h2 = 51.3.

The calculated values of the amplitudes of the reflected waves coincide at small level differences. For the
largest level differences, the discrepancy between the calculated values does not exceed 6%. The experimental
curves lie below the calculated ones; at large level differences, they are different by no more than 6%. For
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Fig. 5. Dependence of the splash-up height (I) and the reflected-wave amplitude
(II) on the level difference: solid curves refer to calculation and points refer to
experiment; curve 1 refers to l02 = 51.3, 61.5, and 71.8 (three curves coincided
with an accuracy up to 0.5%), curve 2 and points 5 (I) and 6 (II) refer to
l02 = 51.3, curve 3 and points 7 and 8 refer to l02 = 61.5, and curve 4 and points
9 and 10 refer to l02 = 71.8.

l2/h2, the difference between the calculated and experimental values of the amplitude of the reflected waves
does not exceed 8%.

It follows from a comparison of the measured and calculated wave velocities that the experimental
values are approximately 5% smaller than the calculated ones in the range 0.5 6 ∆h0 6 1.4. Because the
wave propagation was nonstationary and it was characterized by different velocities of the leading-edge points
(both for smooth and breaking waves), the velocity of motion of the average-in-height point of the leading
edge was used as a characteristic wave velocity.

As has already been mentioned, as the second critical wave velocity was reached, breaking of the leading
edge was observed in the experiment in the direction of the wave propagation, and the propagation velocity
of the broken front could increase. In numerical calculations, the process of breaking with increase in the
velocity and amplitude was not observed.

It was revealed in experiments [10] that if the incoming dam-break wave is smooth, the height of its
splash-up correlates well with the splash-up height of solitary waves. We analyze this problem in more detail.
The magnitude of the maximum splash-up of a solitary wave at a vertical wall was investigated in [6–9]. In
[9], the following formulas containing terms from the first to the third order are obtained with the use of the
perturbation method applied to the equations of potential fluid motion:

ζ0 = 2a0; (3)

ζ0 = 2a0 + (a0)2/2; (4)

ζ0 = 2a0 + (a0)2/2 + 3(a0)3/4. (5)

Here a0 is the dimensionless amplitude of a solitary wave. In [6, 7], the splash-up height of a solitary wave is
calculated numerically on the basis of the complete equations of potential motion. In [8], five types of splash-up
of solitary waves at a wall are identified experimentally. It is noteworthy that the dependence of the splash-up
height on the amplitude of the incoming wave in the form of a soliton by means of the Zheleznyak–Pelinovskii
model is expressed by formula (4).
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Fig. 6. Dependence of the splash-up height of solitary (curves 1–5) and dam-
break (curve 6) waves on the amplitude: curves 1–3 refer to calculations by
formulas (3), (4), and (5), respectively, curve 4 refers to calculation by means
of the model [6]; points 5 and 6 refer to experimental results of [8] and results
of the present experiments, respectively.

Figure 6 shows the dependence of the splash-up height on the amplitude for solitary and dam-break
waves. Experimental points 5 from [8] and points 6 obtained in the present experiments are in satisfactory
agreement, although they are obtained in channels of different dimensions and by different methods for waves
of two types. In the case of solitary waves, the experiments are in better agreement with the calculation
performed according to the model of potential flows [6] (curves 4) and the calculation in [7]. Dependence
(5) (curve 3) corresponds well to experiments up to the height of the incoming dam-break wave a0

1 < 0.55.
Formulas (3) and (4) (curves 1 and 2, respectively) describe well the process only for a0

1 < 0.4. We note that
the calculations in [6] were performed only for a0 6 0.7.
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